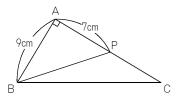
演習問題集5年上第20回・くわしい解説

次 月 ステップ① 1 | · · · p.2 ··· p.3 ステップ① ステップ① 3 | · · · p.4 ステップ① ··· p.5 ステップ① 5 | · · · p.6 ステップ① ··· p.7 ステップ② 8.q ··· ステップ② 2 ... p.9 3 ··· p.10 ステップ② ステップ② 4 ... p.11 ステップ② ··· p.12 ステップ③ 1 | ··· p.13 2 ... p.16 ステップ③ ステップ③ 3 | · · · p.17 4 | · · · p.19 ステップ③

(1) Pは毎秒2cmですから,8秒間で,2×8=16(cm)動きます。

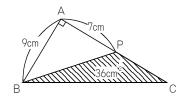
BからAまでは9cmですから、あと 16-9=7(cm)動きます。

右の図のようになりますから、8 秒後のAPの長さは7cmです。



(2) 点 P が出発してから 8 秒後の三角形 P B C の面積は 36 cm²ですから、右の図のようになります。

三角形PBCの底辺epc とすると、高さはABなのでpc です。



よって、 $PC \times 9 \div 2 = 36$ ですから、 $PC = 36 \times 2 \div 9 = 8$ (cm)です。

A C の長さは, 7+8= 15(cm)です。

- 2, 5, 10, 17, 26, 37, ……という数列は, 3 ふえて, 5 ふえて, 7 ふえて, ……という, 「階差数列」と考えることもできますが, それよりも,「平方数」を利用した方がかんたんです。
 - 1番目の数である「2」は、1×1=1に1を加えた数です。
 - 2番目の数である「5」は,2×2=4に1を加えた数です。
 - 3番目の数である「10」は、3×3=9に1を加えた数です。
 - このように考えると、たとえば10番目の数なら、10×10+1=101です。
 - この問題では、「145」が何番目かを求める問題でした。
 - $\square \times \square + 1 = 145 \ \text{Enj} = 2000 \ \text{Enj} = 145 1 = 144 \ \text{Col}$
 - 12×12 が 144 ですから, 145 は 12 番目の数です。

(1) 「池のまわり÷(速さの和)= すれちがいにかかる時間」ですから, 池のまわり÷(90+60)= 7 です。

よって、池のまわり = $(90+60)\times7=150\times7=1050$ (m)です。

(2) 「池のまわり÷(速さの差)= 追いこしにかかる時間」です。

池のまわりは(1)で求めたとおり 1050 mで, A君は分速 90 m, B君は分速 60 mですから, 追いこしにかかる時間= 1050÷(90-60)= 1050÷30= **35**(分後)です。

(1) 1周は360度です。

点Pは24秒で1周するのですから、1秒あたり、360÷24=15(度)ずつ回転します。

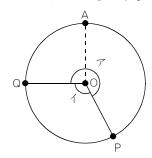
点Qは40秒で1周するのですから、1秒あたり、360÷40=9(度)ずつ回転します。

点Pと点Qは反対方向に回転するので、1秒あたり、15+9=24(度)ずつはなれていきます。

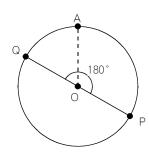
10 秒後には, 24×10=240(度)はなれます。

右の図のアが240度です。

この問題は、角POQの小さい方の角度を求める問題ですから、 右の図のイを求めればよいことになり、360-240=120(度)です。



- (2) 右の図のように、点 P と 点 Q が 180 度 は な れ た ら、 P , O , Q は 一直線になります。
 - (1)でわかった通り、点 P と 点 Q は 1 秒 あ たり、24 度 ず つ は な れ て い き ま す か ら、180 度 は な れ る の に、180 ÷ 24 = <math>7.5 (秒)かかります。



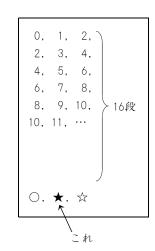
(1) 右の図のように、3個ずつの段にします。

 $50 \div 3 = 16$ あまり 2 ですから, 50 番目までに, 16 段と, あと 2 個あります。

右の図の★を求めればよいわけです。

たとえば1段目の右はしの数は2で,2段目の右はしの数は4です。

このように、たとえば \square 段目の右はしの数は、(\square ×2)になっています。



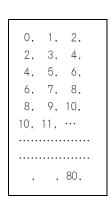
★があるのは(16 段目ではなく)17 段目なので、17 段目の右はしの数である☆は、17×2=34 です。

(2) (1)と同じように、3個ずつの段にします。

たとえば、はじめてあらわれる8は、4段目の右はしにあらわれます。

はじめてあらわれる10なら、5段目の右はしにあらわれます。

同じように考えれば、はじめてあらわれる80は、 $80\div2=40$ (段目)の右はしにあらわれます。



1段に3個ずつあるのですから, 40段目の右はしまでには, 3×40=120(個)の数があります。

よって80がはじめてあらわれるのは、120番目になります。

(1) 弟は,30分で1800mを進んでいます。

よって弟の分速は、1800÷30=60(m)です。

兄の分速は弟の分速の 2.5 倍ですから、兄の分速は、60×2.5= 150 (m)です。

兄は分速 150 m. 弟は分速 60 mであることがわかりました。

(2) (1)で、兄は分速 150 mであることがわかりました。

兄は家から公園までの1800 mを,1800÷150=12(分)で進みます。

グラフを見るとわかるとおり、兄は20分のときに公園に着きました。

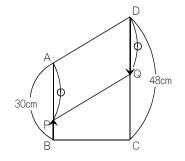
12分かかって20分のときに公園に着いたのですから、家を出発した時刻であるxは、20-12=8(分)になります。

(3) (2)で、xは8であることがわかりました。

兄が出発するときに,弟はすでに 8 分間進んでいますから, $60 \times 8 = 480 \, (m)$ 先にいます。 兄は出発してから, $480 \div (150-60) = \frac{480}{90} = \frac{16}{3} \, (分後)$ に弟に追いつきます。 追いつくまでに,兄は $150 \times \frac{16}{3} = 800 \, (m)$ 進んでいますから, y は $800 \,$ になります。

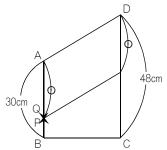
(1) PQがADと平行になったときは、右の図のようになります。

四角形APQDは平行四辺形になるので、APEDQは同じ長さです。

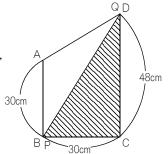


もし、点QがDを出発するのではなく、Aを出発したとすると 右の図のようになり、PとQが出会うことになります。

PとQははじめ 30 cmはなれていて、Pは秒速 1 cm、Qは秒速 3 cmですから、 $30\div(1+3)=7.5$ (秒)で出会います。

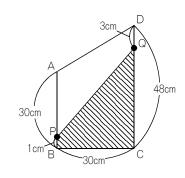


(2) PとQが出発するとき、PはBに、QはDにいて、四角形PBCQ は右の図の斜線のような三角形BCDになっているので、その面積は、 $30 \times 48 \div 2 = 720 \, (cm^2)$ です。



PとQが出発して1秒後のとき、右の図の斜線のような四角形 PBCQになります。

上底は PB=1 cm, 下底は QC=48-3=45 (cm), 高さは30 cmなので面積は, $(1+45) \times 30 \div 2 = 690$ (cm²)です。



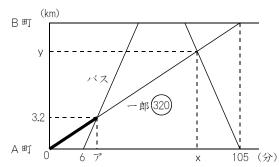
PとQが出発するときの面積は 720 cm²で, 1 秒後の面積は 690 cm²ですから, 1 秒間で, 720-690=30 (cm²)へりました。

面積が 300 cm^2 になるためには、はじめの面積よりも $720-300=420(\text{cm}^2)$ へらす必要があります。

1 秒間に 30 cm² ずつへるのですから, 420 cm²へるためには, 420÷30 = 14 (秒)かかる必要があり, 答えは **14** 秒後です。

(1) 一郎君は分速 320 mですから,右のグラフの 太線の部分である 3.2 km = 3200 mを進むのに, 3200÷320=10(分)かかります。

よってグラフのアは 10 になり、バスは 3200 mを、10-6=4(分)かかることがわかります。



バスは1分あたり,3200÷4=800(m)進みます から,1時間(=60分)では,800×60=48000(m)→48 km進みます。

バスの時速は48kmであることがわかりました。

(2) A町からB町までは、分速320 mである一郎君が、105分かかるような道のりですから、320×105=33600(m)です。

バスの分速は,(1)で求めたように800 mです。

バスはA町からB町まで、33600÷800=42(分)かかります。

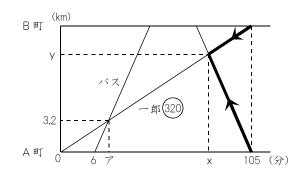
バスの往復は $42 \times 2 = 84$ (分)かかりますが、バスがA町を出発したのは6分のときで、A町にもどってきたのは105分のときですから、105-6=99 (分)かかっています。

よってバスがB町で停車していた時間は,99-84=15(分間)です。

(3) この問題は、時間を逆にもどしていく 解き方がわかりやすいです。

(2)で求めた通り, A町からB町までの 道のりは33600 mです。

105分のときに一郎君とバスは 33600 m はなれていて,そこから時間をもどして



いって、x分のときに一郎君とバスはすれちがうことになります。

33600÷(320+800)= 30(分)ですれちがいますから、xは 105-30= 75(分)です。

また,30分でバスは800×30=24000(m)→24km進みますから,yは24です。

(1) 正六角形の一周は, 30×6=180(cm)です。

点Pは秒速5cmですから、180÷5=36(秒)ごとにAを通過します。

点Qは秒速4cmですから、180÷4=45(秒)ごとにAを通過します。

よって,点Pも点Qも同時にAを通過するのは,36と45の最小公倍数である180秒後です。

(2) 点 P がはじめて E を通過するのは、A から E までの 30×4= 120 (cm)を、秒速 5 cmで進みますから、120÷5= 24 (秒後)です。

次にEを通過するのは、(1)で求めた通り一周に36秒かかりますから、24秒に36秒をプラス したときです。

このように, 24 秒に 36 秒をどんどんプラスしていって, 24, 60, 96, 132, ……秒後に, 点 PはEを通過します。…(ア)

点QがはじめてEを通過するのは、AからEまでの $30 \times 2 = 60$ (cm)を、秒速 4 cmで進みますから、 $60 \div 4 = 15$ (秒後)です。

次にEを通過するのは、(1)で求めた通り一周に45秒かかりますから、15秒に45秒をプラス したときです。

このように, 15 秒に 45 秒をどんどんプラスしていって, 15, 60, 105, 150, ……秒後に, 点QはEを通過します。…(イ)

(ア)と(イ)を見ると, どちらにも60秒があります。

よって、点Pと点QがはじめてEを同時に通過するのは、60 秒後であることがわかりました。

そのあと,(1)で求めた通り,180秒ごとにEを同時に通過していきます。

よって,2回目にEを同時に通過するのは,60+180=240(秒後)で,3回目にEを同時に通過するのは,240+180=420(秒後)です。

(1) 湖のまわりは、1 km = 1000 mです。

兄は1周するのに5分かかるのですから、兄の分速は、1000÷5=200(m)です。

弟は1周するのに8分かかるのですから、弟の分速は、1000÷8=125(m)です。

弟がおくれて出発したことに注意しましょう。

弟が出発するときに、兄はすでに 2 分進んでいたのですから、200×2=400 (m)進んでいました。

兄が 400 m先にいるということは、湖のまわりは 1000 mですから、兄があと 1000 - 400 = 600 (m) 進めば、出発地点にもどってくるということです。出発地点には弟がいます。

つまり、弟が出発するときは、兄は弟よりも 600 m後ろにいて、兄は弟よりも速いので、弟を追いこすことになります。

600÷(200-125)=8(分後)に、兄は弟を追いこします。

ただし、弟が出発するときに、兄はすでに2分間進んでいましたね。

よって兄が弟をはじめて追いこしたのは、兄が出発してから 2+8=10(分後)になります。

(2) (1)で、兄が弟をはじめて追いこしたのは、兄が出発してから10分後であることがわかりました。

10分後に、兄と弟は同じ地点にいます。

そして兄が弟よりも1周よけいに回れば、ふたたび兄が弟を追いこします。

1 周は 1000 m なので、1000÷(200-125)= $\frac{1000}{75} = \frac{40}{3} = 13\frac{1}{3}$ (分) \rightarrow 13 分 20 秒 ですから、

1回目の追いこしから13分20秒たてば、ふたたび兄が弟を追いこします。

よって2回目に兄が弟を追いこしたのは,兄が出発してから 10分後+13分20秒= 23分 20秒 後です。

(1) たとえば4段目には、1、2、3、4、3、2、1 のように、1 から始まって、だんだんふえていって最大で4になり、だんだんへっていって1になるように数がならんでいます。

15段目の場合は,1から始まって,だんだんふえていって最大で15になるまで,15個ならんでいます。

22個目を知りたいのですから, あと 22-15=7(個目)です。

あと7個というのは、14、13、12、11、10、9、8 ですから、答えは8です。

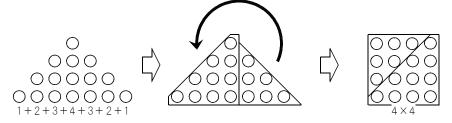
(2) たとえば1段目の和(といっても1個しかありませんが)は1です。

2段目の和は、1+2+1=4ですが、2の平方数は 2×2=4ですね。

3段目の和は、1+2+3+2+1=9ですが、3の平方数は 3×3=9ですね。

このように,□段目の和は,「□×□」という,平方数になっているのです。

なぜこのように平方数になるかの理由は、4段目のサンプルの図で理解しましょう。



よって18段目の和は、18×18=324になります。

(3) (2)でわかった通り,□段目の和は,「□×□」という,平方数になります。

1000に近い平方数をさがしましょう。

30×30=900 がかなり近いですが少し小さく,31×31=961,32×32=1024 ですから,31 段目の和なら1000より小さく,32 段目の和なら1000より大きくなります。

よって□は、31 になります。

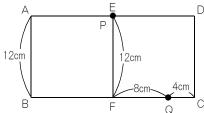
ステップ③ 1 (1)

点Pと点Qが重なるとしたら,辺EFのどこかで重なるしかありえないことに注意しましょう。

この問題にはいろいろな解き方がありますが、「おそい人(この問題では点Pのこと)が端に立って速い人(この問題では点Qのこと)を待ち構える」という解き方で解説します。

おそい人である点PがEまで進んで、点Qを待ち構えます。

点Pは秒速3cmですから,Eまで進むのに $12\div 3=4($ 秒)かかります。



その4秒で,点Qは秒速4cmですから,4×4=16(cm)進みます。

よって点Qは、Cから 16-12=4(cm)だけFの方向に進んだところにいます。

点QからFまでは 12-4=8 (cm)ですから、点Pと点Qの間は、12+8=20 (cm)あります。 よって、 $20\div(3+4)=2\frac{6}{7}$ (秒後)に、点Pと点Qは重なります。

点 P は E まで進むのに 4 秒 かかっていますから,答えは $4+2\frac{6}{7}=6\frac{6}{7}$ (秒後)です。

ステップ③ 1 (2)

正方形ABFE, 正方形EFCDの1周は, どちらも 12×4=48 (cm)です。

点 P は正方形 A B F E を 1 周 するのに, 48÷3=16(秒)かかります。

点Qは正方形 EFC Dを 1 周するのに、48÷4=12(秒)かかります。

よって、点Pも点Qも出発地点にはじめてもどってくるのは、16と12の最小公倍数である48秒のときです。

したがってこの問題は、48秒を1セットとして、同じことのくり返しになります。

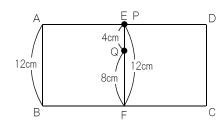
1回目に点Pと点Qが重なるのは、(1)で求めた通り $6\frac{6}{7}$ 秒後でした。

次に,2回目に点Pと点Qが重なる時刻を求めます。

その20秒で、点Qは4×20=80(cm)進んでいます。

点Qは,1周48cmと,あと80-48=32(cm)進んでいます。

1辺は12cmですから、 $32\div12=2$ あまり 8 により、2辺と、 あと8cmです。



このとき,点Pと点Qは,12-8=4(cm)はなれています。

よって2回目に点Pと点Qが重なるのは,20+4÷(3+4)=20 $\frac{4}{7}$ (秒後)です。

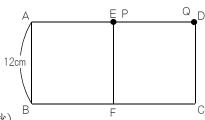
(次のページへ)

次に、3回目に点Pと点Qが重なる時刻を求めます。

その36秒で,点Qは4×36=144(cm)進んでいます。

144÷48=3 ですから,点Qは,3周ちょうど進んでいます。

このとき, 点Pと点Qは, 12×3=36(cm)はなれています。



この状態から点 P と点 Q が重なるまでに、 $36\div(3+4)=5\frac{1}{7}$ (秒)

かかりますが、EF間を点Pが進むのにかかる時間は 12÷3=4(秒)なので、<math>4 秒よりも前に重ならないとムリで、残念ながらこのときはダメです。

これは48秒1セットをこえています。

よって、48 秒 1 セットのうち、点Pと点Qが重なるのは、 $6\frac{6}{7}$ 秒後と、 $20\frac{4}{7}$ 秒後の2回です。

(2)の問題は、点Pと点Qが8回目に重なる時刻を求める問題でした。

3セットで、2×3=6(回)の重なりになり、ここまでで 48×3=144(秒)です。

7回目は、144 秒に $6\frac{6}{7}$ 秒を加えた時刻です。

8回目は、144 秒に $20\frac{4}{7}$ 秒を加えた時刻ですから、 $144+20\frac{4}{7}=164\frac{4}{7}$ (秒後)です。

ステップ③ 2

(1) C君はA君を5分後に追いこしたので、5分間で池のまわり1周ぶんの差がつきました。

A君は5分間で 70×5=350(m)を進みました。

よってC君は5分間で、350m+池のまわり1周ぶん を進んだことになります。…(ア)

また, C君はB君を 5+4= 9(分後)に追いこしたので, 9分間で池のまわり 1 周ぶんの差がつきました。

B君は9分間で 150×9=1350(m)を進みました。

よって C 君は 9 分間で、 1350 m + 池のまわり 1 周ぶん | を進んだことになります。 …(イ)

(P)と(1)を(1)を(1)を(1)であると、「池のまわり1周ぶん」というのは変わりませんが、mの方が、(1)が (1)1350 (1

なぜ長いのかというと,(イ)の方が 9-5=4(分)だけよけいな時間がかかっているからです。

よって C 君は, 4 分間で 1000 m を進むのですから, C 君の分速は, 1000÷4= 250 (m)です。

(2) (1)が理解できたら,(2)はかんたんです。

(ア)によって、C君は5分間で 350m+池のまわり1周ぶん を進んだことがわかっています。

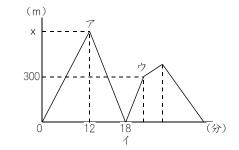
ところで、(1)によって、C君の分速は250 mであることがわかりました。

よってC君は5分間で,250×5=1250(m)を進みます。

350m+池のまわり1周ぶん が1250mですから,池のまわり1周ぶんは,

ステップ③ 3

(1) グラフの折れ曲がっているところでは、兄か弟の速さが変わったり向きが変わったり、何らかの変化がおきたはずです。



兄は弟よりも12分おくれて出発したのですから、グラフのアのときに、兄が出発しました。

兄の方が速いので、2人の間はちぢまっていって、イのときに兄は弟に追いつきました。

兄が自転車で走ったのは9分間なので、兄は弟に追いついてもそのまま自転車で走っていって、ウのときに兄は自転車をおりました。ウは、12+9=21(分)のときです。

よってイからウまでは、21-18=3(分)になり、その3分間で、2人の間は300 m広がりました。

したがってイからウまでは、1分あたり 300÷3=100(m)ずつ広がっています。

イからウまでは、兄と弟は1分に100 mずつ広がっているなら、アからイまでは、兄と弟は 1分に100 mずつちぢまっていたはずです。

アからイまでは 18-12=6(分間)ですから, $100\times6=600$ (m)ちぢまったことになり, \times は 600です。

(2) (1)で,兄の自転車と弟の分速の差は100 mであること,xは600 であることがわかりました。 グラフの0分から12分までは、弟だけが進んでいます。

xは600ですから、弟は12分で600mを進むことがわかります。

よって弟の分速は $600 \div 12 = 50 \text{ (m)}$,兄の自転車と弟の分速の差は 100 mですから,兄の自転車の分速は,50 + 100 = 150 (m)であることがわかりました。

(次のページへ)

(3) (1)で,21分のときに兄は自転車をおりて分速70mの速さで歩きはじめたことがわかっています。

21 分のとき、兄は弟よりも300 m前にいます。

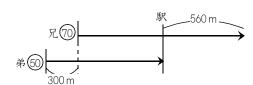
また, 弟の分速は50 mであることが, (2)でわかっています。

よって,21分のときは右の図のようになり,



問題文には、兄は8分早く駅に着いたと書いてありました。

もし弟が駅に着くまで兄が進み続けると, 兄は駅を通りこして,70×8=560(m)だけ先 まで進んでしまいます。



兄が歩き始めたとき, 兄と弟の差は300 mでした。

弟が着いたとき、兄と弟の差は560 mに広がりました。

広がった理由は, 兄が弟よりも速いからです。

兄の分速は弟の分速よりも,70-50=20(m)速いので,560-300=260(m)だけ差が広がったのですから,260÷20=13(分)進みました。

兄が弟よりも 300 m前にいたのは 21 分後でした。そこから 13 分進んだのですから、弟は、21+13=34(分)進みました。

家から駅までのきょりは、分速 50 mの弟が、34分で進むことのできるようなきょりなので、 $50 \times 34 = 1700 \text{ (m)}$ です。

ステップ③ 4 (1)

1段目には分母が2の分数が,2段目には分母が3の分数が,3段目には分母が4の分数が書いてあります。

このように、その段に書いてある分数の分母は、段の数よりも1多くなっています。

ですから、12段目に書いてある分数の分母は、13です。

よって、 $\frac{1}{13}$ から $\frac{12}{13}$ までの分数の和を求める問題になります。

ところで, 1 から 12 までの和は,「(はじめの数 + おわりの数) × 個数 ÷ 2」という, 等差数列の和の公式を利用します。

はじめの数は1で、おわりの数は12です。個数は12個なので、

 $(1+12)\times 12 \div 2 = 78$ になります。

よって、 $\frac{1}{13}$ から $\frac{12}{13}$ までの分数の和は、 $\frac{78}{13} = 6$ になります。

ステップ③ 4 (2)

それぞれの段の分数の和を求めていくと、規則に気がつきます。

- 1段目の1個の分数は、 $\frac{1}{2}$ です。小数で表すと、0.5です。
- 2段目の2個の分数の和は, $\frac{1}{3} + \frac{2}{3} = 1$ です。
- 3段目の3個の分数の和は、 $\frac{1}{4} + \frac{2}{4} + \frac{3}{4} = 1\frac{1}{2}$ です。小数で表すと、1.5 です。

このように、それぞれの段にある分数の個数の 1段目 1 \longrightarrow 0.5 半分 2段目 2 \longrightarrow 1 3段目 3 \longrightarrow 1.5

- (2)の問題は、1段目から20段目までの分数すべての和を求める問題です。
 - 1段目の和は1の半分.
 - 2段目の和は2の半分,
 - 3段目の和は3の半分,

.....

となっているので、1段目から20段目までの和は、(1+2+3+…+20)の半分になります。

 $1+2+3+\cdots+20=(はじめ+おわり)×個数÷2=(1+20)×20÷2=210$ ですから、答えは210の半分になって、210÷2=105 です。

ステップ③ 4 (3)

(2)がわかれば,(3)はとても簡単です。

		個数 和
(2)で、それぞれの段にある分数の個数の半分が、 その段の分数の和になっていることがわかりました。	1段目	1 → 0.5 半分
	2段目	2 → 1 1
	3段目	3 → 1.5

いま, 黒いタイルを 576 枚並べたのですから, 分数の和は 576 の半分になるので, $576 \div 2 = 288$ になります。