シリーズ6年上第6回・くわしい解説

目 次		
重要問題チェック 重要問題チェック	1	p.2
重要問題チェック	3	…p.3 …p.4
重要問題チェック	4	⋯p. 5
重要問題チェック	5	∙∙∙ p.6
重要問題チェック	6	⋯p. 7
重要問題チェック	7	···р.9
重要問題チェック	8	p.10
重要問題チェック	9	···p.11
重要問題チェック	10	p.12
重要問題チェック	11	p.13
重要問題チェック	12	p.14
重要問題チェック	13	p.15
重要問題チェック	14	p.17
重要問題チェック	15	p.18
重要問題チェック	16	···p.19
重要問題チェック	17	p.20
重要問題チェック	18	p.21
重要問題チェック	19	p.22
重要問題チェック	20	p.23
重要問題チェック	21	···p.24
ステップアップ演習	1	p.25
ステップアップ演習	2	p.27
ステップアップ演習		···p.29
ステップアップ演習	-	p.31
ステップアップ演習		p.33
ステップアップ演習	6	p.35

すぐる学習会

(1) 「秒速5m」というのは、1秒間に5m進む速さのことをいいます。

分速 mにするということは、1分間に何m進むかを求めることになります。
1秒間に5m進むのですから、1分間=60秒間では、5×60=300(m)進みます。
よって、秒速5m=分速300mです。

(2) 「時速 6 km」というのは、1 時間に 6 km進む速さのことをいいます。

1時間=60分間,6km=6000mですから,

「1時間に6km」というのは,「60分間に6000 m」進むことと同じです。

よって、1 分あたり 6000÷60=100(m)進みますから、時速 6 km= 分速 100 mです。

(3) 「秒速20m」というのは、1秒間に20m進む速さのことをいいます。

1 秒間に 20 m進むのですから,1 分間 = 60 秒間では,20×60 = 1200 (m)進みます。 したがって,「秒速 20 m = 分速 1200 m」です。

1時間=60分間では、1200×60=72000(m)進みます。

 $1000 \, \text{m} = 1 \, \text{km} \, \text{c} \, \text{t} \, \text{h} \, \text{s}, \, 72000 \, \text{m} = 72 \, \text{km} \, \text{c} \, \text{t}.$

よって,分速 1200 m = 時速 72 kmです。

これで、秒速 20 m = 分速 1200 m = 時速 72 kmであることがわかりました。

(1) たとえば,5秒で20m歩くと,1秒あたり20÷5=4(m)ですから,秒速4mです。

同じようにして、いまは 45 秒で 54 m歩くのですから、1 秒あたり $54 \div 45 = 1.2$ (m) になるので、秒速 1.2 mです。

分数にして、秒速 $1\frac{1}{5}$ mとしてもOKです。

(2) 分速 150 m ですから, 1 分間に 150 m 走ります。もし 3 分間なら, 150×3= 450 (m) 走ることになります。

いまは、1時間24分=84分走るのですから、150×84=12600(m)走ります。

 $1000 \text{ m} = 1 \text{ km} \vec{c} + 12600 \text{ m} = 12.6 \text{ km} \vec{c} + 126000 \text{ m} = 12.6 \text{ km} \vec{c} + 126000 \text{ m} = 12.6 \text{ km} \vec{c} +$

よって、分速 150 mで 1 時間 24 分走ると、12.6 km走ることがわかりました。

分数にして、 $12\frac{3}{5}$ mとしてもOKです。

(3) たとえば, 時速 20 kmで 3 時間走ると, 20×3=60 (km)を走ります。

逆に,時速20kmで60km走るためには,60÷20=3(時間)走らなければなりません。

いまは、時速20kmで16km走るのですから、16÷20=0.8(時間)走ることになります。

1時間=60分なので、たとえば3時間=(60×3)分=180分です。

同じようにして, 0.8 時間 = (60×0.8) 分 = 48 分です。

時速 20 kmで 16 km進むためには、48 分走る必要があることがわかりました。

- (1) はじめの 500 mを分速 125 mで走ると、500÷125=4(分)かかります。
 残りの 300 mを分速 50 mで歩くと、300÷50=6(分)かかります。
 全部で、4+6=10(分)で、500+300=800(m)を進んだことがわかりました。
 1 分あたり、800÷10=80(m)を進むのですから、平均の速さは分速 80 mです。
- (2) 行きは 1200 mを分速 100 mで走ったのですから、1200÷100=12(分)かかります。 帰りは同じ 1200 mを分速 60 mで歩いたのですから、1200÷60=20(分)かかります。 往復すると 12+20=32(分)で、1200+1200=2400(m)を進んだことになります。 1分あたり、2400÷32=75(m)を進むのですから、平均の速さは分速 75 mです。

(1) 0分からア分までは、分速 60 mで歩きました。

ア分までで, 0.9 km = 900 m を歩きました。

900 mを分速 60 mで歩いたのですから,900÷60=15(分)かかりました。

よって,グラフのアにあてはまる数は15です。

(2) (1)で、アは15であることがわかりました。

グラフを見ると、ア分のところからしばらくグラフが水平になっています。

これは、家から 0.9 kmのところでしばらく立ち止まったことを表しています。

問題には、りえさんは途中で友人に出会って5分間話をしたことが書いてありましたから、りえさんが走り始めたのは、出発してから 15+5= 20(分後)です。

りえさんが駅に着いたのは、出発してから32分後です。

よって, りえさんが走り始めてから駅に着くまでに, 32-20=12(分)かかったことがわかりました。

その12分間に、りえさんは家から0.9 kmの地点から、家から2.4 kmの地点である駅まで走りました。

走った道のりは, 2.4-0.9=1.5(km)です。

1 km = 1000 m ですから, 1.5 km = 1500 m です。

よって、りえさんは、12分で1500 mを走ったことがわかりました。

りえさんの走る速さは、分速 1500÷12= **125**(m)です。

問題を整理すると,

はじめは1分あたり40 mずつ、途中からは1分あたり75 mずつ進んで、全部で19分で、家から学校までの900 mを進んだ。

となります。

これは「つるかめ算」ですね。

面積図を書くと,右の図のようになります。

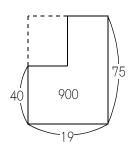
点線部分の面積は、75×19-900=1425-900=525です。

点線部分のたては,75-40=35です。

よって点線部分の横は,525÷35=15です。

したがって,分速40mで,15分歩きました。

分速 75 m で歩いたのは, 19-15=4(分)です。



重要問題チェック 6 (1)

このロボットは、「秒速6cmで10秒進んでは2秒停止する」ことをくり返します。

秒速 6 cmで 10 秒進むと, 6×10=60 (cm)進みます。

2秒停止している間は、進みません。

よってこのロボットは,10+2=12(秒間)で,60cmを進みます。

12秒で60㎝進む

が、1セットです。

ここで、1 セットの中の、はじめの 10 秒はロボットが進み、残りの 2 秒はロボットが 進まないことに注意しましょう。

(1)は、50 秒後にロボットはA地点から何cm離れたところにいるかを求める問題です。

1セットは 12 秒ですから、50 秒では、 $50\div 12=4$ あまり 2 により、4セットと、あと 2 秒あまります。

1セットでは60cm進むのですから、4セットでは、60×4=240(cm)進みます。

また,あまりの2秒は,セットの中のはじめの10秒の中にふくまれているので,ロボットは進みます。

秒速6cmで進むのですから、2秒では、6×2=12(cm)を進みます。

結局,このロボットは4セットで240cm進み,あまりの2秒で12cmを進みます。

全部で 240+12= 252 (cm)を進みますから,50 秒後には A 地点から 252 cm離れた地点にいます。

重要問題チェック 6 (2)

このロボットは、「秒速6cmで10秒進んでは2秒停止する」ことをくり返すので、

12 秒で 60 cm進む

が、1セットであることが、(1)でわかりました。

A地点からB地点までの 570 cmの中に, 1 セットである 60 cmが何セット入っているかを考えましょう。

 $570 \div 60 = 9$ あまり 30 なので、9セット入っていて、あと 30 cm あまっています。

1セットは12秒なので、9セットでは 12×9=108(秒)かかります。

また,あまりの 30 cmを進むのに,秒速6 cmで進むのですから, $30 \div 6 = 5 (秒)$ かかります。

全部で 108+5=113(秒)かかることがわかりました。

1分は60秒なので、113÷60=1 あまり 53 により、113秒は1分53秒です。

よって, A 地点から B 地点までの 570 cm を進むのに, 1 分 53 秒 かかることがわかりました。

(1) 姉と妹は反対方向に進んでいるので, 1分間に 75+45= 120(m)ずつ近づくことが わかります。

720 mを近づくのに、720÷120=6(分)かかります。

よって、姉と妹がすれちがうのは、出発してから6分後です。

(2) まず, 弟が家から分速 45 m で歩き出しました。

兄はその5分後に出発するので、兄が家を出発するときに、弟はすでに $45 \times 5 = 225$ (m)を進んでいます。

兄は225 m前にいる弟を追いかけることになります。

兄は追いつくことができます。なぜなら、兄の方が速いからです。

弟は分速 45 m, 兄は分速 70 mですから, 1 分間で, 70-45=25(m)ずつ近づきます。

はじめは 225 m離れていましたが、1 分間に 25 mずつ近づくので、225÷25=9(分後)に、兄は弟に追いつくことになります。

(1) 0 mからスタートした人は、45分で2880 mを進みました。 分速は、2880÷45=64(m)です。

2880 mからスタートした人は,36分で2880 mを進みました。 分速は,2880÷36=80(m)です。

2人は,2880 m はなれたところから向かい合って進むので,2人の間の道のりは,1分間に64+80=144(m)ずつちぢまります。

2880÷144=20(分後)に,2人はすれちがいます。

また, 20 分後にすれちがうまでに, 0 mからスタートした人は, 分速 64 mで進むので, $64 \times 20 = 1280$ (m)を進みます。

よって、グラフのアは20、イは1280であることがわかりました。

(2) 405 mからスタートした人は, 25分で1080-405=675(m)を進みました。 分速は.675÷25=27(m)です。

0 mからスタートした人は, 15分で 1080 mを進みました。 分速は, 1080÷15=72(m)です。

2人は,405 m はなれたところから同じ方向に進むので,2人の間の道のりは,1分間に72-27=45(m)ずつちぢまります。

405÷45=9(分後)に、追いつきます。

また,9分後に追いつくまでに,0mからスタートした人は,分速72mで進むので,72×9=648(m)を進みます。

よって、グラフのアは9、イは648であることがわかりました。

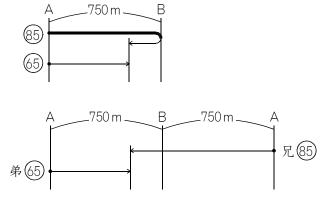
(1) 兄と弟は2人ともA地点を出発することに注意しましょう。

2人は右の図のように進んですれちがいました。

図の太線の部分を折り返すと,

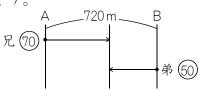
右の図のようになります。

750×2= 1500(m)を,分速85 mと 分速65 mで向かい合って進むので, 1500÷(85+65)= 10(分後)にすれちが います。



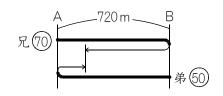
(2) 兄はA地点を、弟はB地点を出発することに注意しましょう。

2人は右の図のように進んで、1回目にすれちがいました。



よって、1回目にすれちがうのは、720÷(70+50)=6(分後)です。

2回目にすれちがうのは、右の図のように進んだときです。



図の太線の部分を折り返すと,

右の図のようになります。

B 720 m A 720 m A R 720 m

道のりが3倍になります から、かかる時間も3倍にな

り,6×3=18(分後)に,2回目にすれちがいます。

したがって,1回目のすれちがいは6分後,2回目のすれちがいは18分後であることがわかりました。

(1) スタート地点で切ってまっすぐな図にすると,500 mの道のりを, A 君は分速 75 m で. B 君は分速 50 mで. すれちがうことになります。

500÷(75+50)=4(分後)に、2人はすれちがうことになります。

また、1回目に のように進んですれちがったとすると、2回目はその1回 スタート スタート のように進んですれちがうので

すから、1回目に4分後にすれちがったのなら、1回目から2回目までも同じく4分かかります。

よって,2回目にすれちがうのは,4×2=8(分後)です。

1回目は4分後,2回目は8分後であることがわかりました。

(2) 1回目に追いこすのは、A君がB君に周回おくれの差をつけたときです。

1周は500 mで, 1分に 75-50=25(m)ずつ差が広がるので, 500 mの差になるのは, 500÷25=20(分後)です。

20分後には、A君とB君は同じ地点にいるのですから、そこからまた20分たつと、ふたたびA君はB君を追いこします。

よって,1回目に追いこすのは20分後,2回目に追いこすのは20×2=40(分後)であることがわかりました。

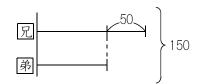
兄の分速を兄, 弟の分速を第とします。

1周450mの池を反対の方向に歩くと3分後にはじめてすれちがうのですから, 450÷(兄+第)=3となり,450÷3=150ですから,兄+第=150です。…(ア)

また、同じ方向に歩くと9分後に兄は弟をはじめて追いこすのですから、 $450\div(\overline{\mathbb{R}}-\overline{\mathbb{A}})=9$ となり、 $450\div9=50$ ですから、 $\overline{\mathbb{R}}-\overline{\mathbb{A}}=50$ です。…(イ)

(ア)と(イ)から, 兄と弟の和が分速 150 mで, 差が分速 50 mになり, 和差算になります。

線分図を書くと右の図のようになり、 弟の分速は、(150-50)÷2=50(m)です。



兄の分速は,50+50=100(m)です。

兄の分速は100 m, 弟の分速は50 mであることがわかりました。

(1) グラフは、兄でも弟でもなく、兄と弟の間の距離の関係を表していることに注意しましょう。

はじめは弟だけが進みました。兄はまだ家にいます。 よって. グラフの0分から5分までの5分間は, 弟だけが進んでいます。

弟は5分で300 m進むことが、グラフによってわかりました。 よって弟の分速は、 $300 \div 5 = 60 \text{ (m)}$ です。

また、5分から9分までの9-5=4(分間)は、2人の間の距離が短くなっていることが、グラフによってわかります。

4分で、300-180=120(m)ちぢまりました。 1分あたり、120÷4=30(m)ずつちぢまっています。

ちぢまった理由は、兄がスタートして、兄の方が弟よりも速かったので、ちぢまっ たのです。

兄は弟よりも分速30mだけ速いことになります。

弟の速さはすでに求めた通り分速 60 mですから, 兄の分速は, 60+30=90(m)です。

兄は分速 90 m, 弟は分速 60 m であることがわかりました。

(2) グラフは、兄が学校に着くまでのようすをかいたものです。 よって、ア分のときに兄は学校に着きました。

では、9分のときにグラフが折れ曲がっている理由は何でしょう。 9分のときに、弟が学校に着いて、9分からア分までは、兄だけが進んでいたということになります。

9分のとき,2人の間の距離は180mになっています。

(1)で求めた通り、兄の分速は 90 mですから、 $180 \div 90 = 2(分)$ たって、ア分になります。

よってアは,9+2=11(分)です。

(1) 道のりが長い方が時間が多くかかります。

道のりの比が3:2なら、かかる時間の比も3:2です。

全部で 30 分かかったのですから、AB間は 30 分を 3:2 で分けたうちの 3 の方になるので、 $30\div(3+2)\times 3=18$ (分)かかります。

(2) 兄と弟は100 m競走をしました。

兄がゴールしたとき,つまり兄が100 m進んだとき,弟はゴールの手前16 mのところにいました。つまり,弟は100-16=84(m)を進んでいました。

兄が100 m進んだとき、弟は84 mを進んだのですから、兄と弟の速さの比は、100:84=25:21 です。

(次のページへ)

(3) 分速 75 m と分速 50 m の速さの比は, 75:50=3:2です。

かかる時間は逆比になって,2:3です。

かかる時間を②と③にすると、「3分前に駅についた」ときのかかる時間が②で、「1分遅れて駅についた」ときのかかる時間は③にあたります。

「3分前」と「1分遅れ」とは、3+1=4(分)ちがいです。

よって、4分が、③-②=①にあたります。

①あたり 4分なら,②にあたるのは $4 \times 2 = 8$ (分)で,③にあたるのは $4 \times 3 = 12$ (分)です。

よって、「3分前に駅についた」ときにかかった時間は8分、「1分おくれて駅についた」ときにかかった時間は12分です。

太郎君は午前9時に家を出ました。8分かかって午前9時8分になったとき、発車時刻の3分前に駅についたのですから、発車時刻は午前9時8分+3分=午前9時11分です。

または、12分かかって午前9時12分になったとき、発車時刻に1分おくれて駅についたのですから、発車時刻は、午前9時12分-1分=午前9時11分です。

また, 家から駅までは, 分速 $75\,\mathrm{m}$ で進んだら $8\,\mathrm{分}$ かかるのですから, $75\,\mathrm{x}\,8=600\,\mathrm{(m)}$ です。

または,分速50mで進んだら12分かかるのですから,50×12=600(m)です。

電車の発車時刻は午前9時11分で、家から駅までの道のりは600mであることがわかりました。

たとえば, 分速 45 mで 10 分歩くと, 45×10= 450 (m)の道のりを進むことができます。

つまり,「速さ×時間=道のり」です。

すると、「時間=道のり÷速さ」であることがわかります。

いま, 道のりの比は2:3で, 速さの比は 45:135=1:3です。

よって、かかる時間の比は「道のり÷速さ」ですから、 $(2\div1):(3\div3)=2:1$ になります。

全部で 18 分かかったことがわかっていますから、 $18 \div (2+1) = 6$ $6 \times 2 = 12$ $6 \times 1 = 6$

よって、AB間は12分、BC間は6分かかったことがわかりました。

AB間は分速 45 mで 12 分かかったので、AB間の道のりは 45×12=540 (m)です。

BC間は分速 135 m で 6 分かかったので、BC間の道のりは 135×6=810(m)です。

よってAC間の道のりは、540+810=1350(m)です。

A地点とB地点の間の道のりが書いてありません。

書いていないときは、何kmに決めても答えを求めることができます。

計算しやすいように,10kmと15kmの最小公倍数である30kmにします。

行きは30kmを時速10kmで進んだのですから,30÷10=3(時間)かかります。

帰りは同じ30kmを時速15kmで進んだのですから,30÷15=2(時間)かかります。

往復すると 3+2=5(時間)で, 30+30=60(km)を進んだことになります。

1時間あたり,60÷5=12(km)を進むのですから,平均の速さは時速12kmです。

(1) AからBを通ってCまで行くとき、AからBまでは平地で、BからCまでは上ることになります。

CからBを通ってAまで帰るとき、CからBまでは下ることになり、BからAまでは平地です。

行きのAからBまで、帰りのBからAまでは平地なので、かかる時間も同じです。

ところが,行くときは50分もかかり,帰りは38分しかかかっておらず,時間にちがいがあります。

ちがいがある理由は、BC間を行きは上って、帰りは下っていることにあります。

上りと下りの速さの比は3:5ですから、かかる時間の比は逆比になって、5:3です。

BC間を上るのにかかる時間を⑤,下るのにかかる時間を③とすると,

行き ··· AB間を進むのにかかる時間+⑤= 50 分

帰り … AB間を進むのにかかる時間+③ = 38分

行きと帰りをくらべると、50-38=12(分)が、5-3=2にあたります。

①あたり、 $12 \div 2 = 6(分)$ です。

B C 間を上るのにかかる時間である⑤を求める問題ですから,答えは 6×5= 30(分)です。

(2) (1)で、BC間を上るのにかかる時間は30分であることがわかりました。

AからBを通ってCまで進むのに50分かかるのですから,A B間を進むのに,50-30=20(分)かかります。

平地,上り,下りの速さの比は4:3:5ですから,AB間は,4の速さで20分,BC間は3の速さで30分かかることになります。

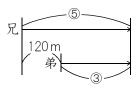
4の速さで20分進むと,4×20=80進み,3の速さで30分進むと,3×30=90進みます。

よって、AB間とBC間の道のりの比は、80:90=8:9です。

(1) 兄と弟の速さの比は5:3ですから、兄と弟が歩いた道のりの比も5:3です。

兄と弟を合わせて 240 m を歩いたのですから、兄が歩いた道のりは、 $240 \div (5+3) \times 5 = 150 \text{ (m)}$ です。

(2) 兄と弟の速さの比は5:3ですから、兄と弟が歩いた道のりの比も5:3です。



兄と弟が進んだ道のりを⑤と③にすると、右の図のようになります。

弟が進んだ道のりは③ですから,60×3=180(m)です。

よって、弟は180 m歩いたところで兄に追いつかれました。

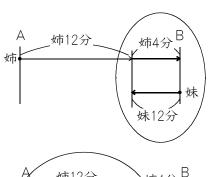
(1) 姉と妹は同時に出発して,12分後にすれちがいました。

すれちがってから4分後に、姉はBに着きました。

姉が4分で進む道のりを、妹は12分かかりました。

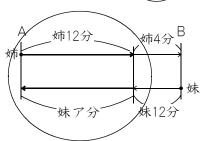
かかった時間の比は4:12=1:3ですから、速さの比は逆比になって3:1です。

(2) 右の図の太線部分を、姉と妹がかかった時間の比は、1:3であることが(1)でわかっています。



よって、右の図の太線部分も、かかった時間はやはり1:3です。

図のアの部分は, 12×3=36(分)ですから, 妹は BからAまで, 12+36=48(分)かかります。



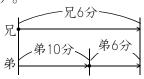
弟がA地点を出発してから10分後に、兄が出発します。

兄 第10分 兄 第10分 兄 第10分

兄は出発してから6分後に弟に追いつくのですが、右の 図のようになるのではありません。

なぜなら、兄が6分進んでいる間に、弟も進んでいるからです。

右の図のようになります。



兄が6分で進む道のりを、弟は 10+6=16(分)かかります。

兄と弟のかかる時間の比は 6:16=3:8 なので、兄と弟の速さの比は逆比になって、8:3 です。

(1) 兄は10分のときにBを出発して、60分のときにAに着きました。

兄はAB間を,60-10=50(分)かかりました。

弟は0分のときにAを出発して、75分のときにBに着きました。

弟はAB間を,75分かかりました。

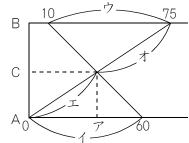
兄が50分かかる道のりを、弟は75分かかったことになります。

かかった時間の比は,50:75=2:3です。

速さの比は逆比になって.3:2です。

(2) このような問題は、「クロス形」を利用した方が 簡単に求められます。

右の図のイは60, ウは 75-10=65ですから, イ:ウは60:65=12:13です。

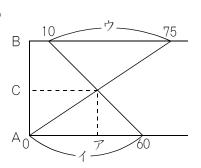


よってエ: オも12:13になり, エとオ合わせて75分 かかっているのですから, エは75÷(12+13)×12=36(分)です。

よって、アも36であることがわかりました。

(3) この問題も「クロス形」を利用すればバッチリ解けます。

右の図のイ:ウは12:13であることが,(2)でわかりました。



もし、姉と妹が1回目にすれちがうのが、出発してから 10分後だったとしましょう。

すると、右の図のようにして2回目にすれちがうのは、 出発してから何分後でしょう。

この図には、AB間の線が3本ありますから、3倍の時間がかかることになり、10×3=30(分後)になります。

よって、右の図の妹が進んだ道のり(10分間で妹が進んだ道のり)に対して、

右の図の妹が進んだ道のり(30分間で妹が進んだ道のり)は, 3倍になっています。

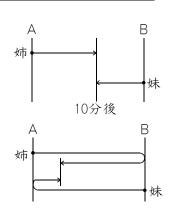
同じように考えて、この問題の場合は姉と妹の速さの比は7:5でしたから、1回目にすれちがうまで姉と妹が進んだ道のりを⑦と⑤にすると、

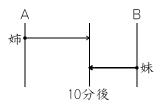
2回目にすれちがうまでに妹が進んだ道のりは3倍になって, ⑤×3=⑥ になります。

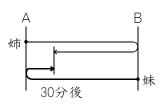
ところで、AB間の道のりは ⑦+⑤=⑩ にあたりますから、右の図のアは、⑤-⑩=③ にあたります。

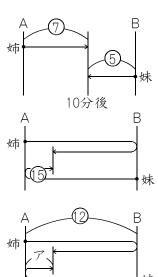
問題には、その③にあたる道のりが 150 m であることが書いてありました。①あたり、150÷3=50(m)です。

よって、AB間の道のりである \mathbb{D} は、 $50 \times 12 = 600 \text{ (m)}$ になります。









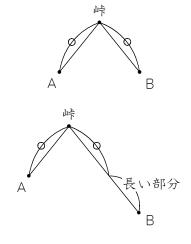
ステップアップ演習 1 (1)

もし、Aから峠までの長さと、峠からBまでの長さが同じだったら、行きも帰りも同じ時間がかかっているはずです。

実際は、行きは64分、帰りは76分かかっているのですから、 同じ時間ではありません。

その理由は、Aから峠までよりも、峠からBまでの方が長いからです。

長い部分を, 行きは下るのであまり時間がかかりませんが, 帰りは上るのでたくさん時間がかかったのです。



下りは分速 75 m, 上りは分速 50 mですから, 下りと上りの速さの比は 75:50=3:2 なので, かかる時間の比は逆比になって, 2:3です。

そこで、長い部分を下るときの時間を②、上るときの時間を③とします。

行きは64分、帰りは76分かかっているのですから、行きと帰りでは76-64=12(分)の差があります。

この12分の差が、3-2=①にあたります。

①あたり、12分です。

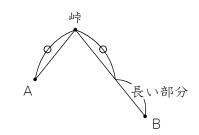
長い部分を, 行きは下るので②の時間= 12×2= 24(分)かかり, 下りの速さは分速 75 mですから, 長い部分の道のりは, 75×24= 1800(m)です。

または、帰りは上るので③の時間= 12×3= 36(分)かかり、上りの速さは分速 50 mですから、長い部分の道のりは、50×36= 1800(m)です。

「長い部分」、つまり、Aから峠までの道のりと、峠からBまでの道のり差は、 1800 m = 1.8 kmであることがわかりました。

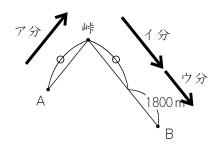
ステップアップ演習 1 (2)

(1)で、右の図の「長い部分」は 1800 m であることが わかりました。



行きは、Aから峠をこえてBまで64分かかることが わかっています。右の図で、ア+イ+ウ=64分です。

右の図のウの部分は,(1)で24分かかることもわかっています。



よって、P+1=64分-24分=40分です。

ア分とイ分の部分が同じ長さだからといって、 $40\div2=20(分)$ とするわけにはいきません。なぜなら、アの部分は上っていて、イの部分は下っているので、かかる時間がちがうからです。

上りと下りの速さの比は,50:75=2:3ですから,かかる時間の比は逆比になって,3:2です。

アとイを合わせて 40 分ですから、アの部分は、 $40\div(3+2)\times3=24$ (分)です。

アの部分は上っているので分速 50 m ですから、A から峠までの道のりは、 $50 \times 24 = 1200 \text{ (m)} \rightarrow 1.2 \text{ km}$ になります。

ステップアップ演習 2

湖のまわりをスタート地点で切って, 右のようなまっすぐの図にします。

Aだけが反対の方向に歩いていますから, AがBやCとすれちがいます。

BはCよりも速いので、AはまずBとすれちがいます。

その3分後に、AはCとすれちがいます。

AもCも3分進んですれちがうのです から、右の図のようになります。

注意 A だけが 3 分進んだ図にしやすいの で注意しましょう。

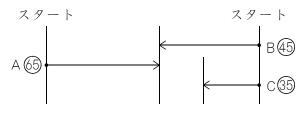
「A3分」のところは,65×3=195(m)で,「C3分」のところは,35×3=105(m)です。

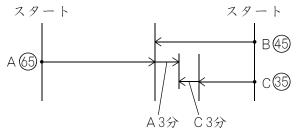
よって,右の図の★の部分の長さは, 195+105=300(m)です。

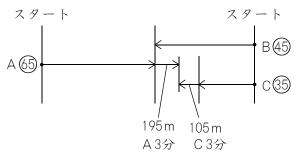
ここで,頭を切り替えます。 300 mの部分を, 「A3分とC3分の和」と考えずに,

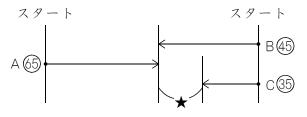
「BとCが進んだ道のりの差」と考えるのです。

(次のページへ)





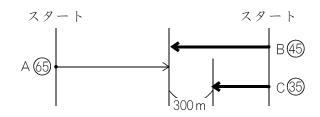




シリーズ6上第6回 くわしい解説

BはCよりも300 mだけよけいに進んでいます。

Bがよけいに進めた理由は、Bの方が 速いからです。

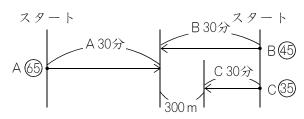


Bは分速 45 m, Cは分速 35 mですから,BはCよりも,1分につき 45-35=10 (m)だけよけいに進めます。

いま,BはCよりも 300 mだけよけいに進んでいるので, $300\div10=30$ (分)かかったことになります。

よって右の図は、AもBもCも30分かかって 進んだときの図です。

湖のまわりの長さ,つまりスタートからスタートまでの長さは,「A 30分」と「B 30分」の合計によって求めることができます。



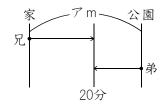
A 30 分は $65 \times 30 = 1950$ (m), B 30 分は $45 \times 30 = 1350$ (m)ですから、湖のまわりの長さは、1950 + 1350 = 3300 (m)です。

ステップアップ演習 3 (1)

グラフは、2人の間の距離の関係を表しています。

0分のとき,2人はアmはなれています。

20分のとき,2人の間の距離がなくなったのですから,20分のときに、2人はすれちがったことになります。



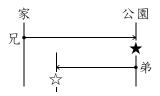
また、36分のとき、グラフが折れ曲がっていますから、 2人の進み方に変化があったことになります。

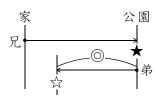
兄が公園に着いたか、あるいは弟が家に着いたかのどちらかですが、「兄は弟より速 〈歩く」と問題に書いてあったので、36分のときに兄は公園に着いたことになります。

36分のときは右の図のような状態になります。

36分のときのグラフを見ると,2人の間の距離は 1440 mです。

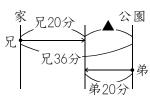
36分のとき、兄は★のところに、弟は☆のところにいるので、2人の間の距離である1440 mは、右の図の ◎の部分になり、ちょうど弟が進んだ道のりになりまます。





よって、弟は36分で1440 mを進んだことになりますから、弟の分速は、 1440÷36=40(m)です。

次に兄の分速を求めるために、20分後の、兄と弟がすれちがったときの図にもどってみましょう。



右の図の \triangle の部分は弟が20分かかる道のりで、弟の 分速は40 mですから、 \triangle の部分の長さは、 $40 \times 20 = 800$ (m) です。

▲の部分を, 兄は 36-20=16(分)で進むのですから, 兄の分速は 800÷16=50(m)です。

兄は分速 50 m, 弟は分速 40 m であることがわかりました。

ステップアップ演習 3 (2)

グラフが折れ曲がっているところは、2人の進み方に変化があったところです。

兄が公園に着いたのは36分のときで、兄の速さは(1)で求めた通り分速50 mですから、家から公園までの道のりは、50×36=1800(m)です。

はじめに兄は家にいて、弟は公園にいたのですから、はじめの2人の間の距離は1800mです。これがアの答えです。

また、兄が往復して家にもどってきたのは、36×2=72(分)のときです。

弟が家に着いたのは、 $1800 \div 40 = 45$ (分)のときで、弟が往復して公園にもどってきたのは、 $45 \times 2 = 90$ (分)のときです。

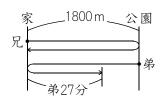
よってグラフが折れ曲がっているのは、36分、72分、45分、90分のときです。

早い時間から書き直すと、36分、45分、72分、90分のときです。

したがってイは45分、ウは72分のときになります。

あとは、工を求めましょう。工は、ウのとき、つまり 72 分のときの、2人の間の距離 を表しています。

ウのとき,つまり72分のとき,兄は往復して公園に着きました。弟は45分のときに家に着いたので,72分のときには,72-45=27(分)だけ,家から公園に向かって進んだところにいます。



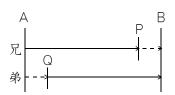
弟は分速 40 m なので、 $40 \times 27 = 1080 \text{ (m)}$ だけ家から公園に向かって進んだところにいたので、2 人の間の距離は、1080 (m)です。

これで,アは1800,イは45,ウは72,エは1080であることがわかりました。

ステップアップ演習 4 (1)

自分が兄や弟になったつもりで考えましょう。

兄は,はじめ時速 45 kmのオートバイで,P地点からは 時速 3 kmで歩いてゴールしました。

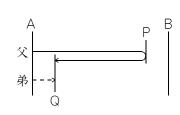


弟は、はじめ時速3kmで歩いて、Q地点からは時速45kmのオートバイでゴールしました。

兄と弟が同時にBに着くためには、2人とも同じ道のりを歩き、同じ道のりをオートバイで進まなければなりません。

よって、AP=QBであり、しかもPB=AQです。 \cdots (★)

父はずっと時速45kmのオートバイで進みましたが、 Pで兄をおろしたあと引き返し、Qで弟と出会いました。



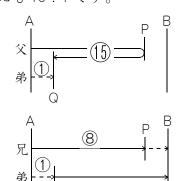
弟は時速3kmで歩き、Qで父と出会いました。

父の方が長い道のりを進んだのは、父の方がオートバイなので速いからです。

父と弟の速さの比は45:3=15:1ですから、進んだ道のりの比も15:1です。

父の進んだ道のりを⑮、弟の進んだ道のりを①とします。

2人合わせて, ⑮+①=⑯進みましたから, A P間の往復が⑯です。A P間は, ⑯÷2=⑧です。



AP間は®, AQ間は①ですから, 右の図のようになります。

(★)によって、PB = AQであることがわかっていますから、AQが①なら、PBも①です。

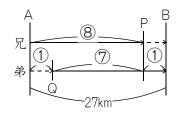
QPt, 8-0=97,

よって、AQ間、QP間、PB間の道のりの比は、1:7:1になります。

ステップアップ演習 4 (1)

(1)で, AQ間, QP間, PB間の道のりの比は, 1:7:1であることがわかりました。

問題にはAからBまでの道のりが27kmであることが書いてありました。



よって①あたり $27 \div (1+7+1) = 3 \text{ (km)}$ です。

兄はAからPまでは時速45kmのオートバイで、PからBまでは時速3kmで歩きました。

したがって、兄はAからPまでを $24 \div 45 = \frac{8}{15}$ (時間)かかり、PからBまでを $3 \div 3 = 1$ (時間)かかりました。

兄は全部で、 $\frac{8}{15}+1=1\frac{8}{15}$ (時間)かかりました。父も弟も、同じ時間かかっています。

 $\frac{8}{15}$ 時間 = $(\frac{8}{15} \times 60)$ 分 = 32 分 ですから, 答えは 1 時間 32 分後です。

ステップアップ演習 5 (1)

電車の「上り」「下り」というのは船とはちがって, 東京駅に近づくのが「上り」,東京駅から遠ざかるのが 「下り」です。

右の図の矢印の方向が上りだとすると,いま自動車が 電車とすれちがった状態ですが,この5分後に, 電電車

次の電車とすれちがいます。

車車5分車車5分

また、右の図の矢印の方向が下りだとすると、いま自動車が電車に追いつかれた状態ですが、この20分後に、

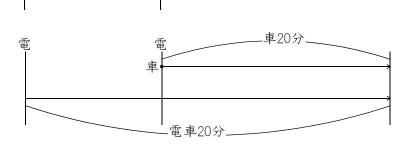
次の電車に追いこされます。 この図と.

すれちがいのときの図を左右 反対にした図を重ねて書くと, 右の図のようになります。

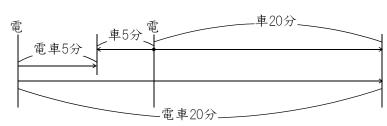
図の★の部分は、電車なら 20-5=15(分)かかり、自動車 なら5+20=25(分)かかります。

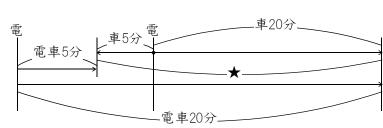
電車と自動車の,かかる時間 の比は 15:25=3:5なので,

速さの比は逆比になって、5:3になります。



下り

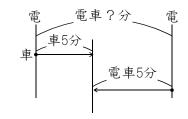




ステップアップ演習 5 (2)

この問題は,「すれちがい」の図でも「追いこし」の図でも解くことができます。

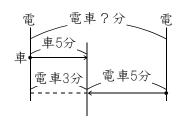
「すれちがい」の図を利用すると、電車が何分間隔で 運転されているかを求めるのですから、右の図の「電車 ?分」のところを求める問題です。



(1)で、電車と自動車の速さの比は5:3であることがわかりました。

電車と自動車が,ある道のりを進むのに,かかる時間の比は逆比になって,3:5です。

よって、自動車が5分かかる道のりを、電車ならば3分で進むことができます。



よって,右の図の?分のところは,電車は 3+5=8(分) で進むことができます。

電車は8分間隔で運転されていることがわかりました。

ステップアップ演習 6 (1)

姉と妹の速さの比は8:3ですから、姉が8進んでいる間に、妹は3進みます。 姉が8往復する間に、妹は3往復します。

よって、姉が8往復して、妹が3往復したときに、2人ともはじめてぴったり往復したことになり、2人は止まります。

つまり、2人が止まるのは、(姉が8往復、)妹が3往復したときです。

妹はPQ間を55秒かかるのですから、1往復には、55×2=110(秒)かかります。

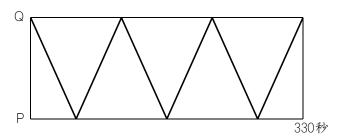
よって妹が3往復するには、110×3=330(秒)かかります。

2人が歩くのをやめて止まったのは、出発してから 330 秒後であることがわかりました。

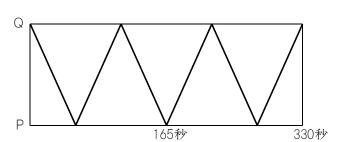
ステップアップ演習 6 (2)

(1)で、330 秒後に、姉は8往復、妹は3往復して歩くのをやめたことがわかりました。 姉と妹の進んだようすをグラフにして、求めていきましょう。

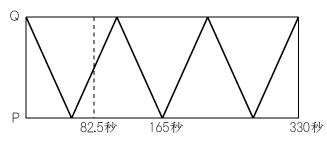
妹は330秒の間に3往復しています から、右のグラフのようになります。



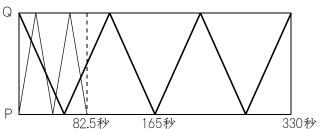
姉は330秒で8往復しますから, 330秒の半分の330÷2=165(秒)の 間に,8÷2=4(往復)します。



姉は165秒の半分の165÷2=82.5(秒) で,2往復します。



姉の 82.5 秒までのようすを書きこむと, 右のグラフのようになります。



姉の 330 秒までのようすを書きこむと, 右のグラフのようになります。

○をつけたところが,2人が同じ地 点を同時に通過したところで,全部で 15回あります。

